SynthWorks

VHDL Training Experts

VHDL Quick Reference

1. VHDL Designs

A design is partitioned in to a modular blocks. Each
block in the design is created with an entity and
architecture. Each block is coded in a separate file.

Each entity and architecture is compiled into a library.
Entity names within a library must be unique. The
architecture statement repeats the entity name, so the
architecture name typically indicates the type of code it
contains: RTL, structural, or testbench.

2. Entity =10 of a Design

library ieee ;
use 1ieee.std _logic_1164.all ;

entity MuxReg 1is

port (
Clk : In std_logic ;
Sel : In std_logic ;

A : In std_logic_vector(7 downto 0);
B : In std_logic_vector(7 downto 0);
Y : Out std_logic_vector(7 downto 0)
)

end MuxReg ;

3. RTL Architecture = Implementation

RTL code creates hardware and/or logic. RTL code

contains assignments and process statements.

architecture RTL of MuxReg is
-- Declarations
signal Mux:
std_logic_vector(7 downto 0);
begin
-- Code
Mux <= A when (Sel = "0%) else B ;

RegisterProc : process (CIk)
begin
if rising_edge(Clk) then
Y <= Mux ;
end if ;
end process ;

end RTL ;
http://www.SynthWorks.com jim@ SynthWorks.com

4. Structural Architecture = Connectivity
Structural code connects lower levels of a design.
Structural code has three pieces: component
declarations, signal declarations, and component
instances (creates the connectivity).

architecture Structural of MuxReg is

—-- Component Declarations
component Mux8x2
port (
Sel > In std_logic ;
10, 11 : In unsigned(7 downto 0)
Y : Out unsigned(7 downto 0)
):

end component ;
component Reg8

port (
Clk : In std_logic ;
D : In unsigned(7 downto 0)
Q : Out unsigned(7 downto 0)
)

end component ;

-- Signal Declarations
signal Mux : unsigned(7 downto 0);
begin

-- Component Instantiations
-- Named Association
Mux8x2_1 : Mux8x2

port map (
Sel => Sel,
10 => A,
11 => B,
Y => Mux
)

-- Positional Association
Reg8_1 : Reg8
port map (Clk, Mux, Y);

end Structural ;

5. Common Packages

Usage Abbr. Source
use std.standard.all ; --* std IEEE
ieee.std_logic_1164.all ; 1164 IEEE
use ieee.numeric_std.all ; ns IEEE
use ieee.numeric_std_unsigned.all; nsu IEEE
use ieee.std_logic_arith.all ; sla Shareware
use ieee.std_logic_unsigned.all; slu Shareware
use std.textio.all ; textio |IEEE
use ieee.std_logic_textio.all ; - Shareware

VHDL-2008 adds packages for fixed and floating point.

libraries work and std are implicitly referenced
* package std.standard is implicitly referenced

6. Common Synthesizable Types

Type / Abbreviation Value Package
std_logic / sl UXO01ZWLH - 1164
std_logic_vector / slv array of std_logic 1164
signed / sv array of std_logic ns, sla
unsigned / uv array of std_logic ns, sla

boolean/ bool (False, True) std
integer / int 2% -Dto2¥-1 st
natural / int0+ 0to2¥-1 std
line access string textio

Enumerated type StateType is (SO, S1, S2, S3) ;

7. Assigning Values

A sl <='1" ; -- Character literal

B slv <= "1111" ; --string literal

Cslv <= X"F"; -- hex. 4 bits per character

E slv <= (others =>'1") ; --aggregate
L_int <= 15 ; -- universal integer
Mint <= 16#F# ; --base literal (16 = base)

N_bool <= TRUE ;
8. VHDL Operators

-- boolean only true or false

Logic and, or, nand, nor, Xor, xnor

Comp =, /=, <, <=, >, >=

Shift sll, srl, sla, sra, rol, ror

Add +, -

Sign +, -

Mult * [, mod, rem

Misc ** abs, not, and, or, nand, nor, Xxor, Xnor

Precedence increases from logic to misc. Underlined
items are VHDL-2008.

9. Concurrent Statements
Concurrent statements are coded in the architecture.

9.1 Signal Assignments
Expression is evaluated immediately. Value is assigned
one delta cycle later.

9.2 Simple Assignment =logic and/or wires

Z <= AddReg ;

Sel <= SelA and SelB ;

YL <= A(6 downto 0) & "07; --ShiftLt
YR <= "0" & A(7 downto 1); --ShiftRt
SR <= SI_sl & A(7 downto 1); --ShiftIn

9.3 Conditional Assignment

Mux2 <=
A when (Sell = "1 and Sel2 = "1%)
else B or C ;

ZeroDet <= "1" when Cnt = 0 else "0";

The conditional expression must be boolean. Also see
the if statement.

© 2000 - 2014 by SynthWorks Design Inc. Rev 1404

9.4 Selected Assignment
See case statement for rules.

with MuxSel select

Mux4l <=
A when "'00",
B when "01",
C when 10",
D when 11",

"X* when others ;

9.5 Process = Container of Sequential Code
Must have either a sensitivity list or wait statement.
Combinational logic requires all inputs (signals read in
the process) to be on the sensitivity list. The "is"
following the sensitivity list is optional.

Mux : process (MuxSel, A, B, C, D) is

begin

case MuxSel 1is
when 00" => Y <= A ;
when "01" => Y <= B ;
when "10" => Y <= C ;
when "11" => Y <= D ;
when others => Y <= "X";

end case ;
end process ;

10. Sequential Statements
Contained in processes and subprograms.

10.1 Signal Assignment

Z <= AddReg ;
Sel <= Sell and Sel2 ;

Note: VHDL-2008 allows conditional and selected
assignments in sequential statements.

10.2 Variable Assignment
Expression is evaluated and assigned immediately.

MuxSel := S1 & SO ;

10.3 IF Statement

if (inl = *1") then
NextState <= S1 ;
Outl <= "1" ;

elsif (in2 = "1 and iIn3 = "1%) then
NextState <= S2 ;

elsif (in4 and in5) = "1" then
NextState <= S3 ;

else
NextState <= S4 ;

end i1f ;

An |F statement can have one or more signal
assignments per branch. Prior to VHDL-2008, the
conditional expression must be boolean. With VHDL-
2008 it may also be bit or std_ulogic (std_logic).

http://www.SynthWorks.com jim@ SynthWorks.com

10.4 Case Statement

Mux : process (S1, SO, A, B, C, D)
variable MuxSel :
std_logic_vector(1 downto 0) ;
begin
MuxSel := S1 & SO ;
case MuxSel 1is

when '"00" => Y <= A ;
when "01" => Y <= B ;
when 10" => Y <=C ;
when "11" => Y <= D ;
when others => Y <= "X";
end case ;

end process ;

A case statement can have zero or more assignments
per target. The others choice must be last and is
required if all conditions are not covered. Since std_logic
has 9 value, others is almost always required for
std_logic and std_logic_vector,

The case expression must have locally static type. Prior
to VHDL-2008, this typically means use either a signal
or variable name or a slice of a signal or variable.

Regular case statement does not use '-' as don't care.

10.5 Asynchronous Reset Flip-Flop
Asynchronous reset is specified before the clock. Clock
and reset must be on the sensitivity list.

RegProc : process (Clk, nReset)
begin
if (nReset = "0") then
AReg <= "0 ;
BReg <= "0~ ;
elsif rising_edge(Clk) then
if LoadEn ="1" then

AReg <= A ;
BReg <= B ;
end if ;
end if ;

end process ;

10.6 Synchronous Reset Flip-Flop
Synchronous reset is specified after the clock. Only
clock must be on the sensitivity list.

RegProc : process (CIlk)
begin
if rising_edge(Clk) then
if (nReset = "0") then
AReg <= "0~ ;
elsif LoadEn = "1" then
AReg <= A ;
end if ;
end if ;

end process ;

10.7 For Loop
RevAProc : process(A)
begin
for i in O to 7 loop
RevA(7 - 1) <= A(1) ;
end loop ;
end process ;

Loop index can be any identifier and does not need to
be declared. For synthesis, loop index must be integer.

10.8 Creating Clock
Clkl <= not Clkl after 10 ns ;

ClkProc : process
begin
Clk2 <= "0-
wait for 10 ns ;
Clk2 <= "1" ;
wait for 10 ns ;
end process ;

Do not change the clock style of an existing testbench.

10.9 Wait Until and after

Wait stops a process for at least a delta cycle. Wait until
Clk ='1' finds the next rising edge of clock and is used
extensively in testbenches.

Signal assignments using "after" always project a value
on a signal. "After" never causes a process to stop.

TestProc : process begin

wait until Clk = "1° ;

Addr <= 000" after tpd_CIlk_Addr;

wait until Clk = 1" ;

Addr <= 001" after tpd_CIlk_Addr;

-- and so on ...

wait for tperiod_clk * 5 ;

report "Test Done" severity failure;
end process ;

10.10 VHDL-2008

VHDL-2008 simplifies case statement rules, allows
std_logic and bit in a conditional expression (if, while,
...), allows selected and conditional assignment for
signals and variables in a sequential code and more.
See SynthWorks' website for papers on VHDL-2008.
Let your vendors know you want these updates.

© 1999 — 2014 by SynthWorks Design Inc. Reproduction of
entire document in whole permitted. All other rights reserved.

SynthWorks Design Inc.

VHDL Hardware Synthesis and Verification Training
11898 SW 128™ Ave. Tigard OR 97223 (800)-505-8435
http://www.SynthWorks.com jim@synthworks.com

© 2000 - 2014 by SynthWorks Design Inc. Rev 1404

